Skip to main content

Using Bimolecular Fluorescence Complementation (BiFC) with Photoactivated Localization Microscopy (PALM) to Analyze Hox/Cofactor Interactions at the Super Resolution Scale in Drosophila Salivary Glands

  • Protocol
  • First Online:
HOX Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2889))

  • 245 Accesses

Abstract

Bimolecular Fluorescence Complementation (BiFC) is a powerful molecular imaging method used to visualize protein-protein interactions (PPIs) in living cells or organisms. BiFC is based on the reassociation of hemi-fragments of a monomeric fluorescent protein upon spatial proximity. It is compatible with conventional light microscopy, providing a resolution that is constrained by the diffraction of light to around 250 nm. PAmCherry1, a fluorescent protein compatible for BiFC and Photoactivated Localization Microscopy (PALM), allows the analysis of PPIs with nanometer spatial resolution and single molecule sensitivity. To date, this so-called BiFC-PALM approach has only been described in human cell culture. Here, we present a protocol for performing BiFC-PALM in Drosophila larval salivary glands, using the interaction between the Hox protein Ultrabithorax (Ubx) and the generic Hox cofactor Extradenticle (Exd) as a model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Romei MG, B. S. (2019) Split green fluorescent proteins: scope, limitations, and outlook. Annu Rev Biophys 6:19–44

    Article  Google Scholar 

  2. Castillo S, Gence R, Pagan D, Koraïchi F, Bouchenot C, Pons BJ, Boëlle B, Olichon A, Lajoie-Mazenc I, Favre G, Pédelacq JD, Cabantous S (2023) Visualizing the subcellular localization of RHOB-GTP and GTPase-Effector complexes using a split-GFP/nanobody labelling assay. Eur J Cell Biol 102:151355

    Article  PubMed  Google Scholar 

  3. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2013) Superresolution imaging using single-molecule Localizatio. Amnu Rev Phys Chem 61:345–367. https://doi.org/10.1146/annurev.physchem.012809.103444.Superresolution

    Article  Google Scholar 

  4. Feng H, Wang X, Xu Z, Zhang X, G. Y. (2018) Super-resolution fluorescence microscopy for single cell imaging. Adv Exp Med Biol 1068:59–71

    Article  PubMed  Google Scholar 

  5. Baddeley D, Bewersdorf J (2018) Super-resolution microscopy: what we can learn from localization-based images. Annu Rev Biochem 20:965–989

    Article  Google Scholar 

  6. Nickerson A, Huang T, Lin LJ, Nan X (2014) Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells. PLoS One 9:e100589

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nickerson A, Huang T, Lin LJ, N. X. (2015) Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM). J Vis Exp 22:e53154

    Google Scholar 

  8. Lee YR et al (2010) Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells. Mol Imaging Biol 12:468–478

    Article  PubMed  Google Scholar 

  9. Fan JY, Cui ZQ, Wei HP, Zhang ZP, Zhou YF, Wang YP, Zhang X-E (2008) Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells. Biochem Biophys Res Commun 29:47–53

    Article  Google Scholar 

  10. Nan X, Collisson EA, Lewis S, Huang J, Tamgüney TM, Liphardt JT, McCormick F, Gray JW, Chu S (2013) Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc Natl Acad Sci USA 12(110):18519–18524

    Article  Google Scholar 

  11. Basler K, Bischof J, Maeda RK, Hediger M (2007) An optimized transgenesis system for drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104(9):3312–3317

    Article  PubMed  PubMed Central  Google Scholar 

  12. Provost A, Rousset C, Bourdon L, Mezhoud S, Reungoat E, Fourneaux C, Bresson T, Pauly M, Béard N, Possi-Tchouanlong L, Grigorov B, Bouvet P, Diaz JJ, Chamot C, Pécheur EI, Ladavière C, Charreyre MT, Favier A, Place C, Monier K (2019) Innovative particle standards and long-lived imaging for 2D and 3D dSTORM. Sci Rep 9:17967

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bischof J et al (2013) A versatile platform for creating a comprehensive UAS- ORFeome library in Drosophila. Development 140:2434–2442

    Article  PubMed  Google Scholar 

  14. Hudry B, Viala S, Graba Y, Merabet S (2011) Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol 9:5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondation pour la Recherche Médicale (FRM 160896), CNRS, ENS-Lyon and UAR3444/US8.

We thank the Bloomington stock center for the Drosophila fly lines and platforms of the UAR3444/US8 (Arthrotools and PLATIM). We thank Elodie Chatre for her help on the super resolution microscope and her critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Merabet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vanderperre, S., Duffraisse, M., Place, C., Merabet, S. (2025). Using Bimolecular Fluorescence Complementation (BiFC) with Photoactivated Localization Microscopy (PALM) to Analyze Hox/Cofactor Interactions at the Super Resolution Scale in Drosophila Salivary Glands. In: De Kumar, B., Shelar, A. (eds) HOX Genes. Methods in Molecular Biology, vol 2889. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4322-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-4322-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-4321-1

  • Online ISBN: 978-1-0716-4322-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics