Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Teams / Comparative developmental biology and regeneration - M. AVEROF / Publications / publications-averof / A common cellular basis for muscle regeneration in arthropods and vertebrates.

A common cellular basis for muscle regeneration in arthropods and vertebrates.

Nikolaos Konstantinides and Michalis Averof (2014)

Science, 343(6172):788-91.

Many animals are able to regenerate amputated or damaged body parts, but it is unclear whether different taxa rely on similar strategies. Planarians and vertebrates use different strategies, based on pluripotent versus committed progenitor cells, respectively, to replace missing tissues. In most animals, however, we lack the experimental tools needed to determine the origin of regenerated tissues. Here, we present a genetically tractable model for limb regeneration, the crustacean Parhyale hawaiensis. We demonstrate that regeneration in Parhyale involves lineage-committed progenitors, as in vertebrates. We discover Pax3/7-expressing muscle satellite cells, previously identified only in chordates, and show that these cells are a source of regenerating muscle in Parhyale. These similarities point to a common cellular basis of regeneration, dating back to the common ancestors of bilaterians.

 
automatic medline import

Document Actions